LeetCode - 4-Median of Two Sorted Arrays
problem
solution
这道题目没能做出来,从网上找到了题解。题解是将问题转换为寻找第K小的数,且边际情况非常少。
首先假设数组A和B的元素个数都大于k/2,我们比较A的第k/2小的元素和B的第k/2小的元素A[k/2-1]和B[k/2-1]。
如果A[k/2-1]<B[k/2-1],这表示A[0]到A[k/2-1]的元素都在A和B合并之后的前k小的元素中。换句话说,A[k/2-1]不可能大于两数组合并之后的第k小值,所以我们可以将其抛弃。证明:假设A[k/2-1]大于合并之后的第k小值,我们不妨假定其为第(k+1)小值。由于A[k/2-1]小于B[k/2-1],所以B[k/2-1]至少是第(k+2)小值。但实际上,在A中至多存在k/2-1个元素小于A[k/2-1],B中也至多存在k/2-1个元素小于A[k/2-1],所以小于A[k/2-1]的元素个数至多有k/2+ k/2-2,小于k,这与A[k/2-1]是第(k+1)的数矛盾。
当A[k/2-1]>B[k/2-1]时存在类似的结论。
当A[k/2-1]=B[k/2-1]时,我们已经找到了第k小的数,也即这个相等的元素,我们将其记为m。由于在A和B中分别有k/2-1个元素小于m,所以m即是第k小的数。(这里可能有人会有疑问,如果k为奇数,则m不是中位数。这里是进行了理想化考虑,在实际代码中略有不同,是先求k/2,然后利用k-k/2获得另一个数。)
通过上面的分析,我们即可以采用递归的方式实现寻找数组A和B的元素个数都大于k/2时第k小的数。对于另一种情况,使用min(k / 2, A.size)和k-k/2且保证A.size<B.size那么就可以转为前面的条件。
此外我们还需要考虑几个边界条件:
. 如果A或者B为空,则直接返回B[k-1]或者A[k-1]; . 如果k为1,我们只需要返回A[0]和B[0]中的较小值; . 如果A[k/2-1]=B[k/2-1],返回其中一个;
code
double findKth(int a[], int m, int b[], int n, int k)
{
//always assume that m is equal or smaller than n
if (m > n)
return findKth(b, n, a, m, k);
if (m == 0)
return b[k - 1];
if (k == 1)
return min(a[0], b[0]);
//divide k into two parts
int pa = min(k / 2, m), pb = k - pa;
if (a[pa - 1] < b[pb - 1])
return findKth(a + pa, m - pa, b, n, k - pa);
else if (a[pa - 1] > b[pb - 1])
return findKth(a, m, b + pb, n - pb, k - pb);
else
return a[pa - 1];
}
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int *A = nums1.data(), m = nums1.size(), *B = nums2.data(), n = nums2.size();
int total = m + n;
if (total & 0x1)
return findKth(A, m, B, n, total / 2 + 1);
else
return (findKth(A, m, B, n, total / 2)
+ findKth(A, m, B, n, total / 2 + 1)) / 2;
}
};